ISAKOS 2007 SYMPOSIUM: The Future of Sports Medicine
Chairmen Dr. Gary Poehling, Dr. Savio Woo

Next Generation: Cartilage Solution

Alberto Gobbi, MD
Qing Chen, MD, Alex Carpio, MD

Orthopaedic Arthroscopic Surgery International, Milan, Italy

I. THE CARTILAGE, AS WE KNOW IT

A. Articular Cartilage Complex: Structural Specificity and Function
 - Chondrocytes 1-10%
 - Water 70-80%
 - Collagen 12-14%
 - Type II 10-12%
 - Type IX ~1%
 - Type XI ~1%
 - Proteoglycans 7-9%
 - Hyaluronan-Proteoglycan-Aggregate 6-8%
 - Other proteoglycans ~1%
 - Mineral <4%
 - Matrixproteins <1%

B. Biology of Articular Cartilage: A Very Limited Capacity of Healing
 - Cartilage is avascular
 - Chondrocytes have lost the ability to divide in vivo
 - Chondrocytes - embedded into the extracellular matrix, inhibited from migrating to the defect

C. Biology of Chondrocytes in Monolayer Culture
 - Chondrocyte proliferation - re-enter the cell-cycle by isolation and culture
 - Chondrocyte dedifferentiation - flattened fibroblast-like appearance; synthesis of collagen type I

D. Biology of Chondrocytes in 3D. Culture
 - Chondrocyte redifferentiation - rounded shape; restart of collagen type II expression

II. CARTILAGE TREATMENT TODAY

AUTOLOGOUS CHONDROCYTE IMPLANTATION
 - Indications and Application
 - Symptomatic, focal, full thickness cartilage lesion
 - Absence of significant arthritis
 - Young patients (15-50 years)
 - Treatment Goal
 - Restoration of the structural and biomechanical integrity of the articular surface to optimize function

A. 1st Generation: Peterson Periosteal Patch Technique
 - developed by Dr. Peterson (Sweden) in 1987
 - obtained FDA approval in August 1997
 - to date, > 15000 patients have been treated worldwide
 - used mainly for injuries of the knee joint
 - with documented good long-term results

 - Is still an actual procedure?
 - complex & invasive
 - difficulty in managing chondrocyte culture solution
 - “water-tight” periosteal suturing
B. 2nd Generation ACI with 3D Scaffold:

novel scaffold, no periosteal patch, optimised cell line

Requirements:

- Biodegradable Scaffolds to anchor, deliver and orient cells
- Bioactive factors to provide instructional cues
- Cells responsive to their environment

Surgical techniques for 2nd generation ACI:

- First Phase (diagnostic arthroscopy and graft harvest)
- Second Phase (graft implantation)
 - Arthrotomy approach
 - Mini arthrotomy approach for patellar lesions
 - Arthroscopic technique

Evaluation Of Outcome

- Non-invasive: Clinical, MRI, Ultrasound
- Invasive: Arthroscopy and Biopsy at 4, 12, 24 months

Clinical Studies: From 2000, more than 3500 patients treated with hyaluronan-based scaffold in Europe

Articular Cartilage Engineering with Hyalograph C. 3-year Clinical Results.
Conclusion: The positive clinical results obtained indicate that Hyalograft C is a safe and effective therapeutic option for the treatment of articular cartilage lesions

Conclusion: Biodegradable scaffolds seeded with autologous chondrocytes can be a viable treatment for chondral lesions

Advantage Of 2nd Generation ACI

- Biologic and Structural - enhanced cell proliferation, maturation
- Surgical - no need for periosteal tissue harvest; reduced implant related morbidity; reduced surgical time

Possible Complications:

- Scaffold detachment, Synovitis, Arthrofibrosis

How to Improve:

TiGenix ChondroCelect™: Better Quality and Higher Concentration of Chondrocytes

ChondroCelect-Score: molecular profile of stable cartilage forming cells

ChondroCelect™:
Reconstitution of Tissue Function Correlation ChondroCelect™ Score and Stable Cartilage
Stable phenotype, High proliferation, High ability of ECM synthesis

III. FUTURE DIRECTION: CARTILAGE DEFECTS TREATMENT

Stem Cells, Growth Factors, Biomaterials, One step surgery, Better techniques & instruments

Mesenchymal Stem Cell for Cartilage Defect Treatment

- Properties of MSC
 - Ability to self-replicate indefinitely
- Ability to become specialized cells

- **Adult MSC**
 - Derived from adult tissue
 - Involved in host tissue maintenance/repair
 - Multiple sources
 - Bone marrow, Adipose tissue, Peripheral blood, Brain, Skeletal muscle, Skin, Liver

- **Plasticity of Adult MSC**
 - Capable of forming cells other than host tissue
 - Example: bone marrow
 - Original belief: blood cells only (HSCs)
 - Further research: bone, cartilage, fat (MSCs)
 - Recent evidence: neural, muscle, heart

- **MSC Culture**
 - Cells Harvesting
 - Bone marrow, Peripheral blood, Adipose tissue
 - Cells Proliferation
 - Growth factors increases proliferation rates in MSC culture
 - Cells Differentiation
 - Osteogenesis
 - Adipogenesis
 - Chondrogenesis
 - Micromass culture or pellet culture system as a good model of chondrogenesis
 - Added growth factors with chondrogenic potential into culture medium
 - TGF, BMPs, FGF, PDGF, IGF, EGF

- **MSC Concentration**
 - Goal: one step surgery
 - Max. concentration: 4x
 - Starting from 30 ml of bone marrow aspiration, we can obtain 34,200 mesenchymal stem cells...
 - are those cells enough?

- **Osteogenic and Chondrogenic differentiation of 3DST derived from Human Adipose Tissue (MSC)**
 - Tissue Engineering without Scaffold
 - Synovial or Adipose Cell Therapy for Repair of Cartilage & Meniscus
 - (Norimasa Nakamura Osaka, Japan)

- **MSC-magnetic beads complex for articular cartilage repair**
 - The formation of the MSC-magnetic beads complexes (Anti CD44 antibody + CD44-MSC) ➔ The distribution of the complexes under EMF condition ➔ Chondrogenesis of the complexes under EMF condition
 - (Mitsuo Ochi Hiroshima, Japan)

- **Possible Advantages of 3rd Generation**
 - No need of arthrotomy
 - No need of harvesting the normal cartilage
 - Possibly no cell culture
 - Possibility to repeat MSC injection
 - Ability to use cytokine: growth factor simultaneously

- **MSC for Cartilage Defects Treatment:** Clinical Studies
 - Conclusion: MSCs were capable of regenerating a repair tissue for large chondral defects

Gene Transfer for Cartilage Protection by Viral Vectors
- Gene transfer of cytokines and cytokine-inhibitors
 - Cytokines: interleukin-4, interleukin-10 (potentially joint-protective molecules)
 - Cytokine-inhibitors: tumor necrosis factor-a, interleukin-1
- Gene transfer of intracellular signaling molecules
 - Inhibition of the transcriptional activator NFkB
- Gene transfer of inhibitors of matrix-degrading enzymes
 Overexpression of tissue inhibitor

Other Possibilities for One Step Surgery

- Articular Cartilage Defects Reconstruction by Plasma Rich Growth Factors
 - Increase in the total glycosaminoglycans synthesis and decrease in its degradation
 - Increase in the matrix collagen II content
 - Stimulation of the chondrogenesis increasing proliferation, differentiation and adhesion of the chondrocyte
 (Ramon C, et al. Clinica del Pilar, Barcelona Spain)

- Cartilage Defect Treated with Microfracture/BMP-7(OP-1)
 - Microfracture vs Microfracture plus BMP-7
 - Microfracture mostly fibrocartilage
 - Microfracture plus BMP-70% hyaline or hyaline like repair
 (Rodrigo JJ, et al Colorado, U.S.A.)

- GelrinCartilage™
 - Mechanism PEGylated fragments released, Chondroinductive
 - Advantages Low-cost, Off-the-shelf, Arthroscopic, Delivery
 - Disadvantages Early technology, Osteochondral model
 (Regentis Biomaterials LTD.)

- TrueFit Plug
 - Mechanism Osteoinductive, Chondroinductive
 - Advantages Low-cost, Off-the-shelf, Carrier
 - Disadvantages OC defect, Size limitations
 (OsteoBioligics, Inc. - Smith & Nephew USA)

- NeoCart
 Core Technology
 3-D Bovine collagen, Autologous chondrocytes, Expand/Seed, Hydrostatic bioreactor (6 wk), Implant bioadhesive (Histogenics Corporation)

- Cartilage repair with engineered scaffold-free ACI
 Scaffold-free 3D Synthetic Tissue (3DST) derived from Synovium
 - Advantages Low-cost, Off-the-shelf,
 - Disadvantages No clinical studies yet
 (Norimasa Nakamura Osaka, Japan)

- Autologous chondrocyte implantation without ex vivo cell expansion: CAIS/Griffin Project
 - Mechanism Local cloning, Matrix/Collagen II
 - Advantages Low-cost, Off-the-shelf, Arthroscopic
 - Disadvantages Size limitations, Hyaline-like, no clinical studies with long term follow up
 (DePuy Orthopaedics,Mitek Inc)

- “Culture-free” & “Scaffold-free” Technique
 - Articular Cartilage Healing by OP-1 Based Cocktail of Growth Factors
 - Advantage: Partial thickness cartilage lesions
 - Disadvantage: No clinical studies, high cost
 (Jelic m, University of Zagreb, Croatia)

CONCLUSION

- Human’s dream is to remain young and active forever
- Cartilage regeneration is the “challenge” for the next 20 years
- Understanding the “Chondropenia concept” and instruct patients
- Respect the “envelope” of function
- Surgery might not be the only solution
REFERENCES